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L lntroduction

In 1970's Shakura'and Sunyaev [l] have developed

a stationary accretion disc model widely known as a "s
have introduced a parameter o which simultaneously des

two of the most important angular momentum transport
the turbulent viscoiity and c field viscosity. The pa^rametef cr gives

ttte pioportionatrity reiation shear stress w,r and pv,2, where p is the

sas den,sitv and y is the sou lues of cr under'an astrophysical interest
iie in the r:ange l'0 ,s- cr < L noted that during the type I and type II
X-ray burst &ents the intensive flow of low angular momentum X-ray photons
from the neutron star surfa.ce is able to i

pressure i

ii"l'J,"ff:'
radiative and molecular viscosities are neglected [1]' The importance of radia-
tive viscosity is also mentioned by A r a v and B e g e l.m a n [5], but these cases

includr: coniiderations of very hot innermost disc regions and jets arising from
supercritical accretion regime. Pringle [6] has recently discussed the present
status ,of the angular momentum transport problem in accre,tion discs. It should
be exp,eslgd thal changing of the physical cbnditions naturally leads to different
valuei of cr. For example-, the radially moving thermal instability front can de-

linit tlhe accretion disi into relatively "cool" region with Cr(=C[" and "hot" part
with a = a, ll, 8.|. We shall not consider in this paper such a 

-possible type of
instability Ana tfiatt neglect the radial dependence of u at all. We shall also
neglect the vertical disc structure (the z-cootdinate dependence), using disc-
heigbt averaged quantities (temperature Z, densiry p, etc.).
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The standard a-model is described by shakura and Sunyaev [l] for
steady-state circular discs. Recently Syer and Clarke have derived solutioni for
stationary discs with constant eccentricities in the form of the two-dimensional
analogues of the cr-model ([9], Appendix B). This generalization of the stan-
dard cr-disc model was related with the observational and theoretical evidences
that the tidal interaction in some close binary stellar systems rnay cause elonga-
tion of the accretion discs (mostly of their outer parts) lI0_12J.-

II. Accretion disc model

Lyubarskij et al. [13] have investigated analitically
and numerically viscous accretion discs consisting of series of nested ellipticai

with a major semiaxes a, eccentricitv e and
cosity coefficient q, temperature Z, pressure p
gfd o' er the disc thickness fI. Lyubarskij
C I a r k e's [9,14] conclusion about the lonl

gevity of eccentric discs in a Keplerian gravitational potential also in the case 9f
variable eccentricity e:e(p).It should be noted thit these inferences are not

relation
(1) p:r(l*ecos<p),
where. q is measured with respect to the direction of pericentre, which is as-
sumed to be the same for all particle streamlines. According to above expres-
sion, if any quantity (e.g., disc surface density r) is a constant iround the stream-
line, but depends on the focal parameter p,a transition to the radial coordinate
r (i.e., the distance from the centre of the compact object) recovers the angular
dependence on the azimuthal angle q. The considered model uses the appioxi-
mation of "pressure-free" fluid in the sense that the pressure does not ft^ay ai-
rect role e flow, except that it cbntrols the local viscosity.
This allo motion of the gas particles, which spiral inwaid
with a lo yp. The later iJconnected to the local accretion
rate,M. (F 3], eq. (30)), assumed to be a constant with respec t to p and time /, as
we deal ab initio with the stationary accretion problem.'Our consideration in-
cludes the assumption that both 1J and T are in-local equilibrium (case C from
themodel of Syer gnd clarke 19,r4l),which-.,*r thattheiequantities

"l?ng-. 
fast enough along the streamlines in order to attain a 

"o.r"rporrdencewith the other local physical conditions, on the other hand, neglecting the ra-
dial heat transfer, we shall assume that the heat losses are slow. This eriables usto accept an adiabatic motion of the gas during its nearly Keplerian orbiting
along the streamlines:

12



(2) p @, <p) = K (p, q) py (p, <p),

(3) k =kr: orlmp,
where o"is the Thomson cross-section and mois theproton mass. T.he equationof state is given by

(4) p =4co 7o.

where c is the light speed and o, i, ,rr.3lrrrun-Boltzmann consrant;

,rur.(ti) 
middle zone B with an ideal gas dominated plasma with equation of

(5) p =4pT,
tl

al gas dominated plasma (equation of

(6) k : ko: (p T.-7t2 = 6.273 x 1022 p T-ttz,
where ( is a numerical constant, which value depends on the mean Gaunt factor(g = 1) and the chemical composirion [15]. The adiabatic index is accepted tobe equal to y: 5/3.

balance may be written as

(7) ' 'ir@,q,e)r1",r1or=!(*-pl,

where ?\") = Da@),D'|", ,, Dc@);o ,, In. lrTirlr^"^r consrant, M is themass of the compact object in the disc centre and
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(8)Y(e,<p)=*1r*""o,.pyftl+.,;+(7e+e,1costp+4e,cos,,qf,

16]' Taking into account that the verti-

an'd the K6plerian angular frequency is

e can express the condition of hydro-

he disc as

(9) P(z =o) - P(z =o) -1'*r"
PH t 8^

In the third Place, the
described bY the thermal
S u ny a ev ([1], eq. (2'7)),
oer unit time, then it is rel

(10)

Therefore, the radiation losses from the

the disc contour Per unit time are

_4o, -+:- a .

c

two boundaries (upper and lower) of
i?ur=',

(1 1)
'f##Jiaqa,

)'i no,ro* Ji de:='f WJe o.p,(r2)

,ll; -"'j ;:fi ':Tr ff ':; t' . :Iff i:i
transformaiion from Cartesian coordi-

FinallY, from the continuitY equa"

ij et il. [13] have derived the use-

.i ittto some unspecified functiott

.fu, e) and a known dePendence on 9:

(1 3)

flp*"'=o



purpose in this paper is to obtain in an explicit form analytical expressions for
flp, e) and the other accretion disc characteristics (averaged over the disc thick-
ness): temperature T, density p, viscosity q, etc. Generally speaking, for a given
mass accretion rate M and mass of the compact object M, they are expected to
be functions of p, g and e.

III. Solutions to the accretion disc structure equations

The standard cxjdisc model [1] deals with vertically aver-
aged astrophysical quantities and this approximation is also retained in the con-
sidered here viscous elliptical discs [9, 13,l4J. The difference between these two
cases is that in the later all quantities are allowed to depend not only on r, but
also on <p. As concerns to the u-parameter, we assume the simplest possibility
o,:constant throughout the disc. Taking into account (9), the ratio
El H =p(z =0) and (2), we obtain

(14)

On the other hand, from (13) follows

(l s) p,' =(DlHl*' =ft l(nJir,)l'-'
Combining (14) and (15), and having in mind that JiVa=^IGMf p, we can
express the disc thickness f1, volume density p and pressure P by means of the
unknown yet functions K (specifying the gas entropy) andf (specifying the disc.
surface density I):

rpYu =!r&n2.

H(p,rp,e,K,fi = ft=[a"r 
v-t oi+sYz6+ ecos *)-']"tt*",

P ( p, rp, e, K, f ) - K"'*t) [',r'? 
(1 +-e 9os 9)3 

-l tt"'

lap'l

(1 6)

(17) p (p,q,e, K,.f ) =
cos
1

12(l + e

8Kp

(l e)

(18)

With the above results it is easy to find the viscosity coefficient, integrated
over the disc thickness ([3], eq. (48));

\(p,g,e,K,f) = aDv"H

= . /T gzrtr*ry -g- l*z 
rtn-D pa (t+ e cos *yrr-,)/, ]'/(1*' 

),

\l8 GM'

where the first equality follows from (9) and, P=ytpt (with v, the adiabatic
speed of sound), analogously to the derivation of eq. (52) in [13]. In the case of
blliptical discs with a constant eccentricity (i.e., e,:0), the convolution of the
shear tensor o,u o* may be computed from eq. (dl6) given by Lyubarskij
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et al. [13]. Note that an additional multiplier (l+e cos<p) may be extracted frbm
the expression in the curly brackets:
(20) 02 =o*o& =(GMf zp3)(l+ecosg) '[9 -2e2 +ro +$1"-2ci +rt).or.p

+ 48e2 cost <p + 32e3 cos3 g + 8e4 coso <pl

= (cvl z p')10 - r' )' + 8(t + e cos rp)' ], (for e,:0).

According to (19) and (20), the left hand side of thermal balance equation
(12) becomes

(2t) lTno'J-roq)'^ '

I

6 " 
*+,i,- ilr' -,' f'[ffipn. TG#hp"]

(22)

For zone B (ideal gas, p5/3; k:k.), instead of equation (4), now we
equation (5), which signifies that ?a:(pP lRp)a and, correspondingly:

(23)

Finally, for the outermost zone C (ideal gas, y:513; k:k) we shall take into
account (5) and (6) to obtain

'{ffia^r="Y'il!Go,

were the upper expression holds for y:413 and the lorryer refers to y:5f3, respec-
tively. Let us now compute the right hand side of (12) for each of the three
zones A, B and C. According to (4), valid for a radiation-dominated plasma
(zoneA:y:413;k:kr):

must use

(24)

Jio pls/2 'lm K6 r,2 --s/2K".f ' p
2n

J 
(t * r 

"ot 
q)slz d<p.

03(Rts/z

t6



In the derivation of Q! - (24) we have again used the representations ( 13),
(16) - (18) for E, H, p andP, respectively.

- The integral.s over the angular variable e can be evaluated by means of the
hypergeometric function F (a, b, t; 

? [17, l8]:

(2s) '1 ----!f-- = zn r( L .{ * !. r, 
", ) .

[(l+ecosg)" \2 2 2 )
series, because the eccentricity e of2<l). For integer x:0, +1, *2,'..., the

through Legendre polyno-
balance equation (12) en-
e):

(26)

(27)

(28)

(2e) \(p,q,e,.f ) =

/\;
| 

- 

lJ

-,/ \ I Jts ak.Ra I lr -\- /rrBle)=ll l lt_",),rl*,ttlA

[z4Jcrrao"Fo )L 
\-

Ku!, = A(e)1aa/t o-slt , (for zone A),

K{o = a(eft/a oW,' (for zone B),
I

Kto = C(ef-Vru oz/, , lfor zone C),

5?^-;,- i,,' ,"

X,*,r, u,)*'" 
[*, ,!r,', 

r)

)l ',
))f,r; u'j.'. (- *,;
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T

,l; e2

_!.1. r, ",8'8.

e constant (over the
ts, we can now retutn
, e, fl in which we set
B and C):

,? #Hf-' p(r*ecos e)-rslr+, (zone A),

,i Js : a.(! i oi(r+ ecos alrl^, (zone B),Jtcu t

,1 {T'.t:l r* ,H (r + eco, ,plr/o ,(zone c).
Jr cv

t7

l1(t- "')'c(e)= I
)



The auxiliary function Y (e, q) is already computed for constant eccentric-
ity discs (8). Consequently, we are now in a position to evaluate the left hand

side Jrrrdrp of the angular momentum balance (7). The later becomes an equa-

tion 3nly for one unknown function f (p, e) which can easily be solved, using

again hypergeometric functions (25). We stress that the integration constants
O ^(r), 

D"(e) ind D.(e) (for each zone A, B and C) in (7) may be, generally speak-
in?, aifferent for these three distinct regions. This situation arises from the pos-

sibility to choose specific boundary conditions (determining D(e)) for every zone.
How to select these conditions, in order to have a self-consistent global struc-
ture of the accretion disc, is beyond the scope'of this paper. We assume a priori
that our investigation concerns only with such gas particles which streamlines
fall well inside the considered zone and do not approach very ciose its
boundaries. Solving the equation of angular momentum balance (7), we have:

A(e\
= --i: P.M'

- 11. r, ,, )- r ( -rt .-?1. ,, ", ).128' , l. 28 28 ))

(30) fx(p,e) = A@) (zone A),

r/7

e)

)'

A(

^2

c[

1-
A(e):

e 1,1 =1,+ o*"u'#',J*,,- ,,;ilo,(* * ,, ", )- " [- *,- +, 
,, ,' 

)]#,

where the approximate equalities are referenced to the conditions
p >> Dl f ctvtu'z ,i = A, B, c.

IY Discussion and conclusions

The last three relations (30) - (32) close the solution of the
problem, because the coefficients A(e),A(e),...,C(e) are known functions of
the eccentricity e. For computational reasons, it is preferable hypergeometric
functions F (a, b, c; z) to have arguments which are less or at least of order of
unity (i.e., in our case we want lal:\,lbl:l) This condition insures their high
accuracy computation even with mini-calculators U9]. It is useful to apply the
linear transformation [8, 20]
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(3r) .rs(p,e)==].[* '49];, i+ =*o-#, (zone B),' 
_:(,) L Jot"tp I - B(e)' 

3

Ek) =l ri Ji n 
" 

t <,tlt,, -,, ;il oo ( :,-i,r; ", )-, ( -i,-+,,,,, lli,-'-'-L- Jrcrral' L-[8'8' J [8'8' ))

(32) "fc(p,e)=;-fr .p]h r-i
c (e) | Jcvtp I



(33) F (a,b,c;z) = Q- t\-"-u F (, - a, c - b, c; z).

For example, computing A(e). (26), we _may set (I-ez) ttt

( ts )q "\ (43 57 z)
xFl -:,--,1;e' I instead of (l-e2)'zFl *, *,ti e- l, etc.

[28 28 J vo )
Of course, the integration constants Do(e), Do@), and D"(e), still remain

undetermined (if their values cannot be negldcted in the limit of large p). They
may be utilized as additional degrees of freedom to glue more flexibly the three

particular,.it is possible to impose the
density 2(p,q,e) and its derivative

ne zone to another neighbouring one.

he final analytical expressions for the
entropy parameter K and disc surface density X (in which it is evident that the
angular dependence on rp is absent, i.e., K and I are streamline functions only):

,t,tu (,) ;,u {")[* ffi''' 0,,,. (zone A),

B4t3 (e) E 2tsG)[l'a 
nffi] 

'"' r,,,. (zone B),

gat3 (e)czt2,(")[* 
H]-''" 0,,r, (zonec),

(34) K (p,e) =

(3 5) 2(p,e) =

The other structure parameters of the accretion disc may be found by sub-
stituting (30) - (32) and (34) into (16) - (19).
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Enunruqnn aKp eqtaoHnlr .{[rcKoBe c IIo cro.rrHeH
eKcueHTpr{rlvrer. II. Cran4apreH MoAeJr Ha o(-Ar4cK

,\uuumap fuuumpoe

(Peorove)

flonyuenrl ca araururr4rruu u3pa3v 3a SusuuecrrareycnoBr,rf, (Han.nraue, TeMneparypa, rrnbrHocr z r.u.;, xapa*Tepr,r3rrpaq[
Beprr{KanHo ycpeAHeHara crpyKTypa Ha aKpeqr4o'Hrr Al'cKoBe c 

''ocro.flHeHEKCIIEHTPIIqUTET. PETUCHATA CIICTEMA OT YPABHEHI,Ifl BKNK)qBA YPABIIEHI,IETO HA
HerrpeK6cHarocrra, latauca Ha cruroBr{.fi MOMeHT, Xr,IApOCTarr,IttHoro paBHOBeCI{O
rr rorrJrr{HHr{s. 6ar'artc. Teau peurenu{ ca rronyireHlr 3oHI,r
(nrrpeurua, cpe.qHa n arHruna) Ha craHgaprHlrq'M eH orCuep u Knapx u or JLo6apcKLr 14 gp. Hamero caMo
craIILIoHapHa aKpeIII4s I{ He ycraHoBtBa rpaHvqHl4Te ycroBr{s, oflpeAeJl.f,rrltr
KOHCTAIITT4TE HA I,IHTETPUPATTE. fIOTASAHO E, qC AKO IIOCJIEAHUTE CA [DE-He6pexzu'' ro rroBbpxHocrHara nJrbrHocr u roesuqu"rti;; .";;;#;
ypaBHeHr{ero ua a4ua6arara ce pa3Jrarar Ha npor{3BeAeHr,re or, r,r3BecrHrr $yrr*r1"",3aBlrceur{ [oorAeJrHo or Qoraankrfl napaMer.bp p r,r eKcrleHTputrJurrera e.
or6ensaano e cxoAcrBoro B rroBeAerrlrero no 4rnxunara Ha parvyca MexAy
peIIIeHI,ItTa 3a eJIIzIIITI{qHII }I KpbroBr4r Ar{cKOBe
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